Algebra I Common Core State Standards

Having already extended arithmetic from whole numbers to fractions (grades 4-6) and from fractions to rational numbers (grade 7), students in grade 8 encountered particular irrational numbers such as \(\sqrt{2} \) or \(\pi \). In grade 7, students in grade 8 connected their knowledge about proportional relationships, lines, and linear equations (8.EE.5-6). In Algebra I, students solidify their understanding of the analytic geometry of lines. They extend this work with expressions, equations and functions. As students acquire mathematical tools from their study of algebra and functions, they apply these tools in statistical contexts. For example, they might estimate a measure of center or variation and model function on the same coordinate axes. They also draw on skills they first learned in middle school to apply basic structural similarity between this expression and another. Indeed, other mathematical practices in Algebra I might be seen as contributing specific elements of these two. The intent of the following set is not to decompose the above mathematical practices into component parts but rather to show how the mathematical practices work together. Two overarching practices relevant to Algebra I are:

1. **Make sense of problems and persevere in solving them (MP.1).**
2. **Model with mathematics (MP.4).**

Mathematical Practices

- **Make sense of problems and persevere in solving them (MP.1).**
- **Model with mathematics (MP.4).**
- **Reason abstractly and quantitatively (MP.2).**
- **Use appropriate tools strategically (MP.5).**
- **Attend to precision (MP.6).**
- **Look for and make use of structure (MP.7).**

Algebra I Common Core State Standards

<table>
<thead>
<tr>
<th>Clusters with Instructional Notes</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use properties of rational and irrational numbers.</td>
<td>N.NS.3</td>
</tr>
<tr>
<td>Extend the properties of exponents to rational exponents.</td>
<td></td>
</tr>
</tbody>
</table>

The Real Number System (N.RN)

- **N.RN.3**: Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Quantities (N.Q)

- **N.Q.1**: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret scale and the origin in graphs and data displays.
- **N.Q.2**: Define appropriate quantities for the purpose of descriptive modeling.
- **N.Q.3**: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

** Seeing Structure in Expressions (A.SSE)**

- **A.SSE.1**: Interpret expressions that represent a quantity in terms of its context.
 - (a) Interpret parts of an expression, such as terms, factors, and coefficients.
 - (b) Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, express \(P(1 + r)^t \) as \(P \) and interpret \(t \) as a factor not depending on \(P \).

- **A.SSE.2**: Use the structure of an expression to identify ways to rewrite it. For example, \(x + 2y = (x + y) + y \) identifies the structure of the original expression and allows to factor out the common term \(y \).

- **A.SSE.3**: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
 - (a) Factor a quadratic expression to reveal the zeros of the function it defines.
 - (b) Complete the square to reveal the maximum or minimum value of the function it defines.
 - (c) Use the properties of exponents to transform expressions for exponential functions. For example, the expression \(1.15^t \) can be rewritten as \((1.15^{1/12})^{12t} \) to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.

Arithmetic with Polynomials and Rational Expressions (A.APR)

- **A.APR.1**: Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Creating Equations (A.CED)

- **A.CED.1**: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- **A.CED.2**: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- **A.CED.3**: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
- **A.CED.4**: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law \(V = IR \) to highlight resistance \(R \).
Reasoning with Equations and Inequalities (A.REI)

Clusters with Instructional Notes

- **A.REI.1.** Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

- **A.REI.3.** Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

- **A.REI.4.** Solve quadratic equations in one variable.
 a. Use the method of completing the square to transform any quadratic equation ax^2 + bx + c = 0 into an equation of the form (x - p)^2 = q that has the same solutions. Derive the quadratic formula from this form.
 b. Solve quadratic equations by inspection (e.g., for x^2 - 49 = 0, take plus or minus 7), by taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation.

- **A.REI.5.** Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

- **A.REI.6.** Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

- **A.REI.10.** Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

- **A.REI.11.** Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations.
 Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, square root, cube root, and logarithmic functions.

- **A.REI.12.** Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Standards

- **F.IF.1.** Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

- **F.IF.2.** Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

- **F.IF.3.** Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1.

- **F.IF.4.** For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetry; end behavior; and periodicity.

- **F.IF.5.** Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hour it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

- **F.IF.6.** Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

- **F.IF.7.** Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
 a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
 b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

- **F.IF.8.** Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
 a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

- **F.IF.9.** Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Building Functions (F.BF)

Clusters with Instructional Notes

- **F.BF.1.** Write a function that describes a relationship between two quantities.
 a. Determine an explicit expression, a recursive process, or steps for calculating from a context.

- **F.BF.3.** Identify the effect on the graph of replacing f(x) by f(x) + k, f(x) + k, f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Standards

- **F.IF.4.** For a function that models a relationship between two quantities, decide whether f(x) + k, k f(x), f(kx), or f(x + k) for specific values of k (both positive and negative) is more reasonable, and explain the reasons.

- **F.IF.5.** Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

- **F.IF.6.** Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

- **F.IF.7.** Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
 a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
 b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

- **F.IF.8.** Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
 a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

- **F.IF.9.** Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Interpreting Categorical and Quantitative Data (S-ID)

- **S.ID.4.** Use statistics appropriate to the shape of the data distribution to compare central (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
- **S.ID.5.** Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

- **S.ID.6.** Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
 a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
 b. Informally assess the fit of a function by plotting and analyzing residuals.
 c. Fit a linear function for a scatter plot that suggests a linear association.

- **S.ID.7.** Distinguish between correlation and causation.

- **S.ID.8.** Compute (using technology) and interpret the correlation coefficient of a linear fit.

- **S.ID.9.** Distinguish between correlation and causation.

Linear, Quadratic, and Exponential Models* (F.LE)

- **F.LE.1.** Distinguish between situations that can be modeled with linear functions and with exponential functions.
 a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
 b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
 c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

- **F.LE.2.** Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (including reading these from a table).

- **F.LE.3.** Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

- **F.LE.5.** Interpret the parameters in a linear or exponential function in terms of a context.

- **F.LE.7.** Use the properties of exponents to interpret expressions for exponential functions. For example, recognize the inputs as parameters in formulas for exponential functions.

- **F.LE.9.** Use technology to create graphs of functions and their inverses, including graphs of linear, quadratic, exponential, and logarithmic functions.

- **F.LE.10.** Represent data with plots on the real number line (dot plots, histograms, and box plots).

- **F.LE.11.** Use statistics appropriate to the shape of the data distribution to compare central (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

- **F.LE.12.** Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

- **F.LE.13.** Interpret categorical and quantitative data in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

- **F.LE.14.** Interpret data on two quantitative variables on a scatter plot, and describe how the variables are related.
 a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
 b. Informally assess the fit of a function by plotting and analyzing residuals.
 c. Fit a linear function for a scatter plot that suggests a linear association.

- **F.LE.15.** Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

- **F.LE.16.** Compute (using technology) and interpret the correlation coefficient of a linear fit.

- **F.LE.17.** Distinguish between correlation and causation.

* = specific modeling standards appear throughout the high school standards indicated by a star symbol.

Note: The standards addressed here are based on the CCSS document and the PARCC Mathematics Model Frameworks document that the state has indicated will be used as a guideline for EOC assessments. The instructional notes were taken from those included in the CCSS Appendix A document.